Hierarchies in Dependence Logic

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hierarchies in Dependence Logic

We study fragments D(k∀) and D(k-dep) of dependence logic defined either by restricting the number k of universal quantifiers or the width of dependence atoms in formulas. We find the sublogics of existential second-order logic corresponding to these fragments of dependence logic. We also show that, for any fixed signature, the fragments D(k∀) give rise to an infinite hierarchy with respect to ...

متن کامل

Hierarchies in independence logic

We study the expressive power of fragments of inclusion and independence logic defined either by restricting the number of universal quantifiers or the arity of inclusion and independence atoms in formulas. Assuming the so-called lax semantics for these logics, we relate these fragments of inclusion and independence logic to familiar sublogics of existential second-order logic. We also show tha...

متن کامل

A Logic for Conceptual Hierarchies

We propose a proof-theoretical way of obtaining detailed and precise information on conceptual hierarchies. The notion of concept finding proof, which represents a hierarchy of concepts, is introduced based on a substructural logic with mingle and strong negation. Mingle, which is a structural inference rule, is used to represent a process for finding a more general (or specific) concept than s...

متن کامل

Constraint Hierarchies and Logic Programming

Constraint Logic Programming (CLP) is a general scheme for extending logic programming to include constraints. It is parameterized by D, the domain of the constraints. However, CLP(D) languages, as well as most other constraint systems, only allow the programmer to specify constraints that must hold. In many applications, such as interactive graphics, page layout, and decision support, one need...

متن کامل

Hierarchies in Transitive Closure Logic, Stratified Datalog and Infinitary Logic

We establish a general hierarchy theorem for quantiier classes in the innnitary logic L ! 1! on nite structures. In particular, it is shown that no innnitary formula with bounded number of universal quantiiers can express the negation of a transitive closure. This implies the solution of several open problems in nite model theory: On nite structures, positive transitive closure logic is not clo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACM Transactions on Computational Logic

سال: 2012

ISSN: 1529-3785,1557-945X

DOI: 10.1145/2362355.2362359